Copied to
clipboard

?

G = C42.180D10order 320 = 26·5

180th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.180D10, C10.862+ (1+4), C10.412- (1+4), C4⋊Q818D5, C4⋊C4.127D10, (C2×Q8).90D10, D10⋊Q849C2, D103Q839C2, C422D520C2, Dic5⋊Q828C2, (C2×C20).641C23, (C4×C20).274C22, (C2×C10).279C24, C2.90(D46D10), Dic5.Q843C2, D10.13D4.5C2, C20.23D4.11C2, (C2×D20).180C22, C4⋊Dic5.256C22, (Q8×C10).146C22, C22.300(C23×D5), D10⋊C4.76C22, C56(C22.57C24), (C4×Dic5).176C22, (C2×Dic5).147C23, C10.D4.88C22, (C22×D5).124C23, C2.42(Q8.10D10), (C2×Dic10).199C22, (C5×C4⋊Q8)⋊21C2, C4⋊C4⋊D548C2, (C2×C4×D5).161C22, (C5×C4⋊C4).222C22, (C2×C4).222(C22×D5), SmallGroup(320,1407)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.180D10
C1C5C10C2×C10C22×D5C2×C4×D5D103Q8 — C42.180D10
C5C2×C10 — C42.180D10

Subgroups: 678 in 196 conjugacy classes, 91 normal (27 characteristic)
C1, C2, C2 [×2], C2 [×2], C4 [×13], C22, C22 [×6], C5, C2×C4 [×3], C2×C4 [×4], C2×C4 [×8], D4, Q8 [×3], C23 [×2], D5 [×2], C10, C10 [×2], C42, C42 [×2], C22⋊C4 [×10], C4⋊C4 [×4], C4⋊C4 [×12], C22×C4 [×2], C2×D4, C2×Q8 [×2], C2×Q8, Dic5 [×6], C20 [×7], D10 [×6], C2×C10, C22⋊Q8 [×4], C22.D4 [×2], C4.4D4, C42.C2 [×2], C422C2 [×4], C4⋊Q8, C4⋊Q8, Dic10, C4×D5 [×2], D20, C2×Dic5 [×6], C2×C20 [×3], C2×C20 [×4], C5×Q8 [×2], C22×D5 [×2], C22.57C24, C4×Dic5 [×2], C10.D4 [×10], C4⋊Dic5 [×2], D10⋊C4 [×10], C4×C20, C5×C4⋊C4 [×4], C2×Dic10, C2×C4×D5 [×2], C2×D20, Q8×C10 [×2], C422D5 [×2], Dic5.Q8 [×2], D10.13D4 [×2], D10⋊Q8 [×2], C4⋊C4⋊D5 [×2], Dic5⋊Q8, D103Q8 [×2], C20.23D4, C5×C4⋊Q8, C42.180D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C24, D10 [×7], 2+ (1+4), 2- (1+4) [×2], C22×D5 [×7], C22.57C24, C23×D5, D46D10, Q8.10D10 [×2], C42.180D10

Generators and relations
 G = < a,b,c,d | a4=b4=1, c10=d2=a2, ab=ba, cac-1=a-1, dad-1=a-1b2, cbc-1=b-1, dbd-1=a2b, dcd-1=c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 120 11 110)(2 111 12 101)(3 102 13 112)(4 113 14 103)(5 104 15 114)(6 115 16 105)(7 106 17 116)(8 117 18 107)(9 108 19 118)(10 119 20 109)(21 149 31 159)(22 160 32 150)(23 151 33 141)(24 142 34 152)(25 153 35 143)(26 144 36 154)(27 155 37 145)(28 146 38 156)(29 157 39 147)(30 148 40 158)(41 93 51 83)(42 84 52 94)(43 95 53 85)(44 86 54 96)(45 97 55 87)(46 88 56 98)(47 99 57 89)(48 90 58 100)(49 81 59 91)(50 92 60 82)(61 125 71 135)(62 136 72 126)(63 127 73 137)(64 138 74 128)(65 129 75 139)(66 140 76 130)(67 131 77 121)(68 122 78 132)(69 133 79 123)(70 124 80 134)
(1 151 97 126)(2 127 98 152)(3 153 99 128)(4 129 100 154)(5 155 81 130)(6 131 82 156)(7 157 83 132)(8 133 84 158)(9 159 85 134)(10 135 86 160)(11 141 87 136)(12 137 88 142)(13 143 89 138)(14 139 90 144)(15 145 91 140)(16 121 92 146)(17 147 93 122)(18 123 94 148)(19 149 95 124)(20 125 96 150)(21 43 70 108)(22 109 71 44)(23 45 72 110)(24 111 73 46)(25 47 74 112)(26 113 75 48)(27 49 76 114)(28 115 77 50)(29 51 78 116)(30 117 79 52)(31 53 80 118)(32 119 61 54)(33 55 62 120)(34 101 63 56)(35 57 64 102)(36 103 65 58)(37 59 66 104)(38 105 67 60)(39 41 68 106)(40 107 69 42)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 11 20)(2 19 12 9)(3 8 13 18)(4 17 14 7)(5 6 15 16)(21 24 31 34)(22 33 32 23)(25 40 35 30)(26 29 36 39)(27 38 37 28)(41 103 51 113)(42 112 52 102)(43 101 53 111)(44 110 54 120)(45 119 55 109)(46 108 56 118)(47 117 57 107)(48 106 58 116)(49 115 59 105)(50 104 60 114)(61 72 71 62)(63 70 73 80)(64 79 74 69)(65 68 75 78)(66 77 76 67)(81 82 91 92)(83 100 93 90)(84 89 94 99)(85 98 95 88)(86 87 96 97)(121 145 131 155)(122 154 132 144)(123 143 133 153)(124 152 134 142)(125 141 135 151)(126 150 136 160)(127 159 137 149)(128 148 138 158)(129 157 139 147)(130 146 140 156)

G:=sub<Sym(160)| (1,120,11,110)(2,111,12,101)(3,102,13,112)(4,113,14,103)(5,104,15,114)(6,115,16,105)(7,106,17,116)(8,117,18,107)(9,108,19,118)(10,119,20,109)(21,149,31,159)(22,160,32,150)(23,151,33,141)(24,142,34,152)(25,153,35,143)(26,144,36,154)(27,155,37,145)(28,146,38,156)(29,157,39,147)(30,148,40,158)(41,93,51,83)(42,84,52,94)(43,95,53,85)(44,86,54,96)(45,97,55,87)(46,88,56,98)(47,99,57,89)(48,90,58,100)(49,81,59,91)(50,92,60,82)(61,125,71,135)(62,136,72,126)(63,127,73,137)(64,138,74,128)(65,129,75,139)(66,140,76,130)(67,131,77,121)(68,122,78,132)(69,133,79,123)(70,124,80,134), (1,151,97,126)(2,127,98,152)(3,153,99,128)(4,129,100,154)(5,155,81,130)(6,131,82,156)(7,157,83,132)(8,133,84,158)(9,159,85,134)(10,135,86,160)(11,141,87,136)(12,137,88,142)(13,143,89,138)(14,139,90,144)(15,145,91,140)(16,121,92,146)(17,147,93,122)(18,123,94,148)(19,149,95,124)(20,125,96,150)(21,43,70,108)(22,109,71,44)(23,45,72,110)(24,111,73,46)(25,47,74,112)(26,113,75,48)(27,49,76,114)(28,115,77,50)(29,51,78,116)(30,117,79,52)(31,53,80,118)(32,119,61,54)(33,55,62,120)(34,101,63,56)(35,57,64,102)(36,103,65,58)(37,59,66,104)(38,105,67,60)(39,41,68,106)(40,107,69,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,24,31,34)(22,33,32,23)(25,40,35,30)(26,29,36,39)(27,38,37,28)(41,103,51,113)(42,112,52,102)(43,101,53,111)(44,110,54,120)(45,119,55,109)(46,108,56,118)(47,117,57,107)(48,106,58,116)(49,115,59,105)(50,104,60,114)(61,72,71,62)(63,70,73,80)(64,79,74,69)(65,68,75,78)(66,77,76,67)(81,82,91,92)(83,100,93,90)(84,89,94,99)(85,98,95,88)(86,87,96,97)(121,145,131,155)(122,154,132,144)(123,143,133,153)(124,152,134,142)(125,141,135,151)(126,150,136,160)(127,159,137,149)(128,148,138,158)(129,157,139,147)(130,146,140,156)>;

G:=Group( (1,120,11,110)(2,111,12,101)(3,102,13,112)(4,113,14,103)(5,104,15,114)(6,115,16,105)(7,106,17,116)(8,117,18,107)(9,108,19,118)(10,119,20,109)(21,149,31,159)(22,160,32,150)(23,151,33,141)(24,142,34,152)(25,153,35,143)(26,144,36,154)(27,155,37,145)(28,146,38,156)(29,157,39,147)(30,148,40,158)(41,93,51,83)(42,84,52,94)(43,95,53,85)(44,86,54,96)(45,97,55,87)(46,88,56,98)(47,99,57,89)(48,90,58,100)(49,81,59,91)(50,92,60,82)(61,125,71,135)(62,136,72,126)(63,127,73,137)(64,138,74,128)(65,129,75,139)(66,140,76,130)(67,131,77,121)(68,122,78,132)(69,133,79,123)(70,124,80,134), (1,151,97,126)(2,127,98,152)(3,153,99,128)(4,129,100,154)(5,155,81,130)(6,131,82,156)(7,157,83,132)(8,133,84,158)(9,159,85,134)(10,135,86,160)(11,141,87,136)(12,137,88,142)(13,143,89,138)(14,139,90,144)(15,145,91,140)(16,121,92,146)(17,147,93,122)(18,123,94,148)(19,149,95,124)(20,125,96,150)(21,43,70,108)(22,109,71,44)(23,45,72,110)(24,111,73,46)(25,47,74,112)(26,113,75,48)(27,49,76,114)(28,115,77,50)(29,51,78,116)(30,117,79,52)(31,53,80,118)(32,119,61,54)(33,55,62,120)(34,101,63,56)(35,57,64,102)(36,103,65,58)(37,59,66,104)(38,105,67,60)(39,41,68,106)(40,107,69,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,11,20)(2,19,12,9)(3,8,13,18)(4,17,14,7)(5,6,15,16)(21,24,31,34)(22,33,32,23)(25,40,35,30)(26,29,36,39)(27,38,37,28)(41,103,51,113)(42,112,52,102)(43,101,53,111)(44,110,54,120)(45,119,55,109)(46,108,56,118)(47,117,57,107)(48,106,58,116)(49,115,59,105)(50,104,60,114)(61,72,71,62)(63,70,73,80)(64,79,74,69)(65,68,75,78)(66,77,76,67)(81,82,91,92)(83,100,93,90)(84,89,94,99)(85,98,95,88)(86,87,96,97)(121,145,131,155)(122,154,132,144)(123,143,133,153)(124,152,134,142)(125,141,135,151)(126,150,136,160)(127,159,137,149)(128,148,138,158)(129,157,139,147)(130,146,140,156) );

G=PermutationGroup([(1,120,11,110),(2,111,12,101),(3,102,13,112),(4,113,14,103),(5,104,15,114),(6,115,16,105),(7,106,17,116),(8,117,18,107),(9,108,19,118),(10,119,20,109),(21,149,31,159),(22,160,32,150),(23,151,33,141),(24,142,34,152),(25,153,35,143),(26,144,36,154),(27,155,37,145),(28,146,38,156),(29,157,39,147),(30,148,40,158),(41,93,51,83),(42,84,52,94),(43,95,53,85),(44,86,54,96),(45,97,55,87),(46,88,56,98),(47,99,57,89),(48,90,58,100),(49,81,59,91),(50,92,60,82),(61,125,71,135),(62,136,72,126),(63,127,73,137),(64,138,74,128),(65,129,75,139),(66,140,76,130),(67,131,77,121),(68,122,78,132),(69,133,79,123),(70,124,80,134)], [(1,151,97,126),(2,127,98,152),(3,153,99,128),(4,129,100,154),(5,155,81,130),(6,131,82,156),(7,157,83,132),(8,133,84,158),(9,159,85,134),(10,135,86,160),(11,141,87,136),(12,137,88,142),(13,143,89,138),(14,139,90,144),(15,145,91,140),(16,121,92,146),(17,147,93,122),(18,123,94,148),(19,149,95,124),(20,125,96,150),(21,43,70,108),(22,109,71,44),(23,45,72,110),(24,111,73,46),(25,47,74,112),(26,113,75,48),(27,49,76,114),(28,115,77,50),(29,51,78,116),(30,117,79,52),(31,53,80,118),(32,119,61,54),(33,55,62,120),(34,101,63,56),(35,57,64,102),(36,103,65,58),(37,59,66,104),(38,105,67,60),(39,41,68,106),(40,107,69,42)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,11,20),(2,19,12,9),(3,8,13,18),(4,17,14,7),(5,6,15,16),(21,24,31,34),(22,33,32,23),(25,40,35,30),(26,29,36,39),(27,38,37,28),(41,103,51,113),(42,112,52,102),(43,101,53,111),(44,110,54,120),(45,119,55,109),(46,108,56,118),(47,117,57,107),(48,106,58,116),(49,115,59,105),(50,104,60,114),(61,72,71,62),(63,70,73,80),(64,79,74,69),(65,68,75,78),(66,77,76,67),(81,82,91,92),(83,100,93,90),(84,89,94,99),(85,98,95,88),(86,87,96,97),(121,145,131,155),(122,154,132,144),(123,143,133,153),(124,152,134,142),(125,141,135,151),(126,150,136,160),(127,159,137,149),(128,148,138,158),(129,157,139,147),(130,146,140,156)])

Matrix representation G ⊆ GL10(𝔽41)

1000000000
0100000000
0000100000
0000010000
00400000000
00040000000
0000000010
0000000001
00000040000
00000004000
,
40000000000
04000000000
0001000000
00400000000
0000010000
00004000000
0000000100
0000001000
0000000001
0000000010
,
03500000000
73400000000
00032000000
00320000000
0000090000
0000900000
00000000320
00000000032
00000032000
00000003200
,
73500000000
83400000000
00032000000
00320000000
00000320000
00003200000
00000000320
0000000009
00000032000
0000000900

G:=sub<GL(10,GF(41))| [1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0],[40,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0],[0,7,0,0,0,0,0,0,0,0,35,34,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,32,0,0],[7,8,0,0,0,0,0,0,0,0,35,34,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,0,0,9,0,0] >;

47 conjugacy classes

class 1 2A2B2C2D2E4A···4G4H···4M5A5B10A···10F20A···20L20M···20T
order1222224···44···45510···1020···2020···20
size111120204···420···20222···24···48···8

47 irreducible representations

dim111111111122224444
type+++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2D5D10D10D102+ (1+4)2- (1+4)D46D10Q8.10D10
kernelC42.180D10C422D5Dic5.Q8D10.13D4D10⋊Q8C4⋊C4⋊D5Dic5⋊Q8D103Q8C20.23D4C5×C4⋊Q8C4⋊Q8C42C4⋊C4C2×Q8C10C10C2C2
# reps122222121122841248

In GAP, Magma, Sage, TeX

C_4^2._{180}D_{10}
% in TeX

G:=Group("C4^2.180D10");
// GroupNames label

G:=SmallGroup(320,1407);
// by ID

G=gap.SmallGroup(320,1407);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,758,219,100,1571,570,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a^-1*b^2,c*b*c^-1=b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽